Grand Central Dispatch(GCD)是异步执行任务的技术之一。一般将应用程序中记述的线程管理用的代码在系统级中实现。开发者只需要定义想执行的任务并追加到适当的Dispatch Queue中,GCD就能生成必要的线程并计划执行任务。由于线程管理是作为系统的一部分来实现的,因此可统一管理,也可执行任务,这样就比以前的线程更有效率。

Dispatch Queue

Dispatch Queue是用来执行任务的队列,是GCD中最基本的元素之一。 Dispatch Queue分为两种: Serial Dispatch Queue,按添加进队列的顺序(先进先出)一个接一个的执行

Concurrent Dispatch Queue,并发执行队列里的任务

简而言之,Serial Dispatch Queue只使用了一个线程,Concurrent Dispatch Queue使用了多个线程(具体使用了多少个,由系统决定)。

可以通过两种方式来获得Dispatch Queue,第一种方式是自己创建一个:

let myQueue: dispatch_queue_t = dispatch_queue_create("com.xxx", nil)

第一个参数是队列的名称,一般是使用倒序的全域名。虽然可以不给队列指定一个名称,但是有名称的队列可以让我们在遇到问题时更好调试;

当第二个参数为nil时返回Serial Dispatch Queue,如上面那个例子,当指定为DISPATCH_QUEUE_CONCURRENT时返回Concurrent Dispatch Queue。

需要注意一点,如果是在OS X 10.8或iOS 6以及之后版本中使用,Dispatch Queue将会由ARC自动管理,如果是在此之前的版本,需要自己手动释放,如下:

let myQueue: dispatch_queue_t = dispatch_queue_create("com.xxx", nil)
dispatch_async(myQueue, { () -> Void in
    println("in Block")
})
dispatch_release(myQueue)

以上是通过手动创建的方式来获取Dispatch Queue,第二种方式是直接获取系统提供的Dispatch Queue。 要获取的Dispatch Queue无非就是两种类型: Main Dispatch Queue

Global Dispatch Queue / Concurrent Dispatch Queue

一般只在需要更新UI时我们才获取Main Dispatch Queue,其他情况下用Global Dispatch Queue就满足需求了:

//获取Main Dispatch Queue
let mainQueue = dispatch_get_main_queue()
//获取Global Dispatch Queue
let globalQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)

得到的Global Dispatch Queue实际上是一个Concurrent Dispatch Queue,Main Dispatch Queue实际上就是Serial Dispatch Queue(并且只有一个)。

获取Global Dispatch Queue的时候可以指定优先级,可以根据自己的实际情况来决定使用哪种优先级。

一般情况下,我们通过第二种方式获取Dispatch Queue就行了。

dispatch_after

dispatch_after能让我们添加进队列的任务延时执行,比如想让一个Block在10秒后执行:

var time = dispatch_time(DISPATCH_TIME_NOW, (Int64)(10 * NSEC_PER_SEC))
dispatch_after(time, globalQueue) { () -> Void in
    println("在10秒后执行")
}

NSEC_PER_SEC表示的是秒数,它还提供了NSEC_PER_MSEC表示毫秒。

上面这句dispatch_after的真正含义是在10秒后把任务添加进队列中,并不是表示在10秒后执行,大部分情况该函数能达到我们的预期,只有在对时间要求非常精准的情况下才可能会出现问题。

获取一个dispatch_time_t类型的值可以通过两种方式来获取,以上是第一种方式,即通过dispatch_time函数,另一种是通过dispatch_walltime函数来获取,dispatch_walltime需要使用一个timespec的结构体来得到dispatch_time_t。通常dispatch_time用于计算相对时间,dispatch_walltime用于计算绝对时间,我写了一个把NSDate转成dispatch_time_t的Swift方法:

func getDispatchTimeByDate(date: NSDate) -> dispatch_time_t {
    let interval = date.timeIntervalSince1970
    var second = 0.0
    let subsecond = modf(interval, &second)
    var time = timespec(tv_sec: __darwin_time_t(second), tv_nsec: (Int)(subsecond * (Double)(NSEC_PER_SEC)))
    return dispatch_walltime(&time, 0)
}

这个方法接收一个NSDate对象,然后把NSDate转成dispatch_walltime需要的timespec结构体,最后再把dispatch_time_t返回,同样是在10秒后执行,之前的代码在调用部分需要修改成:

var time = getDispatchTimeByDate(NSDate(timeIntervalSinceNow: 10))
dispatch_after(time, globalQueue) { () -> Void in
    println("在10秒后执行")
}

这就是通过绝对时间来使用dispatch_after的例子。

dispatch_group

可能经常会有这样一种情况:我们现在有3个Block要执行,我们不在乎它们执行的顺序,我们只希望在这3个Block执行完之后再执行某个操作。这个时候就需要使用dispatch_group了:

let globalQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)
let group = dispatch_group_create()

dispatch_group_async(group, globalQueue) { () -> Void in
    println("1")
}
dispatch_group_async(group, globalQueue) { () -> Void in
    println("2")
}
dispatch_group_async(group, globalQueue) { () -> Void in
    println("3")
}
dispatch_group_notify(group, globalQueue) { () -> Void in
    println("completed")
}

输出的顺序与添加进队列的顺序无关,因为队列是Concurrent Dispatch Queue,但“completed”的输出一定是在最后的:

completed

除了使用dispatch_group_notify函数可以得到最后执行完的通知外,还可以使用

let globalQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)
let group = dispatch_group_create()

dispatch_group_async(group, globalQueue) { () -> Void in
    println("1")
}
dispatch_group_async(group, globalQueue) { () -> Void in
    println("2")
}
dispatch_group_async(group, globalQueue) { () -> Void in
    println("3")
}
//使用dispatch_group_wait函数
dispatch_group_wait(group, DISPATCH_TIME_FOREVER)
println("completed")

需要注意的是,dispatch_group_wait实际上会使当前的线程处于等待的状态,也就是说如果是在主线程执行dispatch_group_wait,在上面的Block执行完之前,主线程会处于卡死的状态。可以注意到dispatch_group_wait的第二个参数是指定超时的时间,如果指定为DISPATCH_TIME_FOREVER(如上面这个例子)则表示会永久等待,直到上面的Block全部执行完,除此之外,还可以指定为具体的等待时间,根据dispatch_group_wait的返回值来判断是上面block执行完了还是等待超时了。

最后,同之前创建dispatch_queue一样,如果是在OS X 10.8或iOS 6以及之后版本中使用,Dispatch Group将会由ARC自动管理,如果是在此之前的版本,需要自己手动释放。

dispatch_barrier_async

dispatch_barrier_async就如同它的名字一样,在队列执行的任务中增加“栅栏”,在增加“栅栏”之前已经开始执行的block将会继续执行,当dispatch_barrier_async开始执行的时候其他的block处于等待状态,dispatch_barrier_async的任务执行完后,其后的block才会执行。我们简单的写个例子,假设这个例子有读文件和写文件的部分:

func writeFile() {
    NSUserDefaults.standardUserDefaults().setInteger(7, forKey: "Integer_Key")
}

func readFile(){
    print(NSUserDefaults.standardUserDefaults().integerForKey("Integer_Key"))
}

写文件只是在NSUserDefaults写入一个数字7,读只是将这个数字打印出来而已。我们要避免在写文件时候正好有线程来读取,就使用dispatch_barrier_async函数:

NSUserDefaults.standardUserDefaults().setInteger(9, forKey: "Integer_Key")
let globalQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)
dispatch_async(globalQueue) {self.readFile()}
dispatch_async(globalQueue) {self.readFile()}
dispatch_async(globalQueue) {self.readFile()}
dispatch_async(globalQueue) {self.readFile()}
dispatch_barrier_async(globalQueue) {self.writeFile() ; self.readFile()}
dispatch_async(globalQueue) {self.readFile()}
dispatch_async(globalQueue) {self.readFile()}
dispatch_async(globalQueue) {self.readFile()}

我们先将一个9初始化到NSUserDefaults的Integer_Key中,然后在中间执行dispatch_barrier_async函数,由于这个队列是一个Concurrent Dispatch Queue,能同时并发多少线程是由系统决定的,如果添加dispatch_barrier_async的时候,其他的block(包括上面4个block)还没有开始执行,那么会先执行dispatch_barrier_async里的任务,其他block全部处于等待状态。如果添加dispatch_barrier_async的时候,已经有block在执行了,那么dispatch_barrier_async会等这些block执行完后再执行。

dispatch_apply

dispatch_apply会将一个指定的block执行指定的次数。如果要对某个数组中的所有元素执行同样的block的时候,这个函数就显得很有用了,用法很简单,指定执行的次数以及Dispatch Queue,在block回调中会带一个索引,然后就可以根据这个索引来判断当前是对哪个元素进行操作:

let globalQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)
dispatch_apply(10, globalQueue) { (index) -> Void in
    print(index)
}
print("completed")

由于是Concurrent Dispatch Queue,不能保证哪个索引的元素是先执行的,但是“completed”一定是在最后打印,因为dispatch_apply函数是同步的,执行过程中会使线程在此处等待,所以一般的,我们应该在一个异步线程里使用dispatch_apply函数:

let globalQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)
dispatch_async(globalQueue, { () -> Void in
    dispatch_apply(10, globalQueue) { (index) -> Void in
        print(index)
    }
    print("completed")
})
print("在dispatch_apply之前")

dispatch_suspend / dispatch_resume

某些情况下,我们可能会想让Dispatch Queue暂时停止一下,然后在某个时刻恢复处理,这时就可以使用dispatch_suspend以及dispatch_resume函数:

//暂停
dispatch_suspend(globalQueue)
//恢复
dispatch_resume(globalQueue)

暂停时,如果已经有block正在执行,那么不会对该block的执行产生影响。dispatch_suspend只会对还未开始执行的block产生影响。

Dispatch Semaphore

信号量在多线程开发中被广泛使用,当一个线程在进入一段关键代码之前,线程必须获取一个信号量,一旦该关键代码段完成了,那么该线程必须释放信号量。其它想进入该关键代码段的线程必须等待前面的线程释放信号量。

信号量的具体做法是:当信号计数大于0时,每条进来的线程使计数减1,直到变为0,变为0后其他的线程将进不来,处于等待状态;执行完任务的线程释放信号,使计数加1,如此循环下去。

下面这个例子中使用了10条线程,但是同时只执行一条,其他的线程处于等待状态:

let globalQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)
let semaphore =  dispatch_semaphore_create(1)
for i in 0 ... 9 {
    dispatch_async(globalQueue, { () -> Void in
        dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER)
        let time = dispatch_time(DISPATCH_TIME_NOW, (Int64)(2 * NSEC_PER_SEC))
        dispatch_after(time, globalQueue) { () -> Void in
            print("2秒后执行")
            dispatch_semaphore_signal(semaphore)
        }
    })
}

取得信号量的线程在2秒后释放了信息量,相当于是每2秒执行一次。

通过上面的例子可以看到,在GCD中,用dispatch_semaphore_create函数能初始化一个信号量,同时需要指定信号量的初始值;使用dispatch_semaphore_wait函数分配信号量并使计数减1,为0时处于等待状态;使用dispatch_semaphore_signal函数释放信号量,并使计数加1。

另外dispatch_semaphore_wait同样也支持超时,只需要给其第二个参数指定超时的时候即可,同Dispatch Group的dispatch_group_wait函数类似,可以通过返回值来判断。

这个函数也需要注意,如果是在OS X 10.8或iOS 6以及之后版本中使用,Dispatch Semaphore将会由ARC自动管理,如果是在此之前的版本,需要自己手动释放。

dispatch_once

dispatch_once函数通常用在单例模式上,它可以保证在程序运行期间某段代码只执行一次,如果我们要通过dispatch_once创建一个单例类,在Swift可以这样:

class SingletonObject {
    class var sharedInstance : SingletonObject {
        struct Static {
            static var onceToken : dispatch_once_t = 0
            static var instance : SingletonObject? = nil
        }
        dispatch_once(&Static.onceToken) {
            Static.instance = SingletonObject()
        }
        return Static.instance!
    }
}

这样就能通过GCD的安全机制保证这段代码只执行一次。